
Self-contained Systems
(SCS)
An architectural approach that separates 
a larger system’s functionality into many 
independent, collaborating systems.

Created by . Driven by the Community.

The content in this info deck is licensed under the Creative Commons 



A monolith contains 
numerous things inside 
of a single system…



Various Domains



User interface
Business logic
Persistence



…as well as a lot of 
modules, components, 
frameworks, and libraries.



With all these layers in 
one place, a monolith 
tends to grow.



With all these layers in 
one place, a monolith 
tends to grow.



If you cut a monolithic 
system along its very 
domains…



…and wrap every domain 
in a separate, 
replaceable web 
application…



…then that application 
can be referred to as a 
self-contained system 
(SCS).



On its outside, an SCS is a 
decentralized unit that is 
communicating with other 
systems via RESTful 
HTTP or lightweight 
messaging.



Therefore self-contained 
systems can be 
individually developed for 
different platforms.



An SCS contains its own 
user interface, specific 
business logic, and 
separate data storage



In addition to a web 
interface, a self-contained 
system can also provide 
an optional API.



The business logic part 
solely addresses 
problems that occur 
within its core domain. 
This logic is shared with 
other systems only 
through a well-defined 
interface.



The business logic may 
comprise microservices 
designed to solve domain-
specific problems.



Every SCS brings its own 
data storage and with it 
redundant data 
depending on the context 
and domain.



These redundancies are 
tolerable as long as the 
sovereignty of data by 
its owning system is not 
undermined.



This enables polyglot 
persistence, implying 
that a database can be 
selected to solve a 
domain specific problem, 
rather than to fulfill a 
technical urge.

Neo4J Oracle

CouchDB



Within a self-contained 
system, a variety of 
technical decisions can 
be made independently 
from other systems, such 
as choices regarding 
programming language, 
frameworks, tooling, or 
workflow.



The manageable domain 
specific scope enables the 
development, operation, 
and maintenance of an 
SCS by a single team.

Team 1

Team 3Team 2



Self-contained Systems
should be integrated via 
their web interfaces to 
minimize coupling to 
other systems.



Therefore, simple hyperlinks can be used 
to navigate between systems.



Redirection can be used to ensure
navigation works in both directions.



Hyperlinks can also facilitate the 
dynamic inclusion of content served by 

another application into the web interface of a 
self-contained system.



To further minimize 
coupling to other 
systems, synchronous 
remote calls inside the 
business logic should be 
avoided.



Instead, remote API calls 
should be handled 
asynchronously to 
minimize dependencies 
and prevent error 
cascades.



This implies that, 
depending on the desired 
rate of updates, the data 
model’s consistency 
guarantees may be 
relaxed.



An integrated 
system of systems

like this has many benefits.



Overall, resilience is improved through loosely 
coupled, replaceable systems.



Some systems can be individually 
scaled to serve varying demands.



It’s not necessary to carry out a risky 
big bang release to migrate an outdated, 
monolithic system into a system of systems.

Version 1



It’s not necessary to carry out a risky 
big bang release to migrate an outdated, 
monolithic system into a system of systems.

Version 2



Instead, migration can occur in small, 
manageable steps that minimize the risk of 

failure and lead to an evolutionary 
modernization of large and complex systems.



Instead, migration can occur in small, 
manageable steps that minimize the risk of 

failure and lead to an evolutionary 
modernization of large and complex systems.



In reality a system of systems consists of 
individually developed software and 

standard products.



A product that fits well into a system of systems 
can be selected based on the following aspects: 

it should solve a defined set of tasks and 
provide the same integration mechanisms 

that a self-contained system offers.



This ensures that products can be replaced 
safely by other products once their 

lifetime has ended.



This ensures that products can be replaced 
safely by other products once their 

lifetime has ended.



If a product with such integration mechanisms 
cannot be found, it should at least be possible to 

extend that product with uniform interfaces 
that integrate smoothly with the rest of the 

system.



Looking to modernize your IT landscape? 
Or build something new?
We’d love to assist you. 

The content in this info deck is licensed under the Creative Commons 

www.innoq.com

You can explore more in-depth information about self-
contained systems, microservices, monoliths, REST, or 
ROCA at 


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

